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ABSTRACT
Transactional memory (TM) provides a safer, more modular, and
more scalable alternative to traditional lock-based synchronization.
Implementing high performance TM systems has recently been an
active area of research. However, current TM systems provide lim-
ited, if any, support for transactions executing irrevocable actions,
such as I/O and system calls, whose side effects cannot in general
be rolled back. This severely limits the ability of these systems to
run commercial workloads.

This paper describes the design of a transactional memory sys-
tem that allows irrevocable actions to be executed inside of trans-
actions. While one transaction is executing an irrevocable action,
other transactions can still execute and commit concurrently. We
use a novel mechanism called singleowner read locks to implement
irrevocable actions inside transactions that maximizes concurrency
and avoids overhead when the mechanism is not used. We also
show how irrevocable transactions can be leveraged for contention
management to handle actions whose effects may be expensive to
roll back. Finally, we present a thorough performance evaluation
of the irrevocability mechanism for the different usage models.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Concurrent programming struc-
tures; D.3.4 [Programming Languages]: Processors—Run-time
environments

General Terms
Algorithms, Design, Experimentation, Languages, Performance

Keywords
concurrent programming, software transactional memory, virtual
machines, performance
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1. INTRODUCTION
Language constructs for transactional memory (TM) program-

ming have recently gained popularity in the research community as
a safer, more modular, and more scalable alternative to traditional
lock-based synchronization [14, 7, 8, 5, 6]. Transactions allow pro-
grammers to compose software modules in a way that retains scal-
ability and avoids deadlocks. Researchers have made significant
progress recently on improving the performance and functionality
of TM systems. Yet current systems still have restrictions that limit
their practical application as a general-purpose programming tool.
One of the major restrictions is the lack of support for executing
irrevocable actions whose effects cannot in general be rolled back,
such as I/O and system calls, inside transactions.

Virtually all current TM systems support revocation transparency:
they allow the runtime system to automatically revoke any transac-
tion (by undoing effects of its actions) on a conflict with another
transaction. However, revocation transparency limits the applica-
tion of transactions as it precludes execution of irrevocable actions,
and may provide brittle performance for large, long-running trans-
actions.

This paper describes the design and implementation of a TM sys-
tem for Java that enables irrevocable transactions allowed to per-
form actions whose side effects either cannot be rolled back or are
expensive to roll back. We relax revocation transparency by allow-
ing a transaction to transition to an irrevocable state in which it will
no longer roll back as a result of an external action performed by a
different transaction. As a result, once a transaction transitions to
an irrevocable state, the system will guarantee that its subsequent
actions (including, for example, I/O and system calls) will never be
revoked and that its commit operation will succeed.

We identify and concentrate on two main applications of irrevo-
cability. The first application enables transactions to execute ac-
tions whose effects can be neither automatically rolled back nor
compensated. Providing support for irrevocability is essential be-
cause it makes transactions practical in real-world programs that
can perform general I/O operations inside of transactions. The sec-
ond application leverages irrevocable transactions for contention
management. Certain common programming scenarios, such as re-
sizing of a concurrent data structure, can lead to situations where
one transaction (i.e. , the transaction resizing the data structure)
must ultimately succeed, but has a high chance of conflicting with
other transactions. We show that allowing such transactions to op-
erate in an irrevocable mode can improve overall application per-
formance.

To summarize, we make several novel contributions in this pa-
per:

• We introduce a lightweight mechanism called single-owner
read locks that supports different applications of irrevocabil-
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ity. Its design and implementation maximizes concurrency
and at the same time avoids overhead when irrevocability is
not used. (Section 3)

• We demonstrate how irrevocable transactions can be used to
automatically handle execution of actions whose side effects
cannot in general be rolled back, such as certain types of I/O
and system calls. (Section 4)

• We show that irrevocability has another application in sit-
uations where transactions exhibit pathological contention
behavior. For example, concurrent data structures, such as
hash-tables, are likely to be frequently resized while they are
used. This may lead to severe contention problems since the
resizing transaction, requiring a long time to finish, can keep
getting revoked as a result of conflicts. We introduce a new
language construct that allows programmers to use irrevoca-
bility to avoid pathological contention behavior in such cases
(Section 5)

• We describe a mechanism handling interactions between ir-
revocability and aborts that may be explicitly triggered by
the programmer. (Section 6)

• We present a thorough performance evaluation of our irrevo-
cability mechanism. Our implementation is set in a context
of a high-performance, scalable STM system [1]. Our results
demonstrate that our irrevocability mechanism can both (1)
improve the performance of large, long-running transactions
(up to over 8x) and (2) enable general-purpose I/O and sys-
tem calls inside transactions while maximizing concurrency.
(Section 7)

2. OVERVIEW
The independently developed TM systems often provide differ-

ent language constructs to facilitate access to transactional mem-
ory by concurrently executing threads. However, recently one of
the constructs, called atomic, has emerged as one of the most
popular solutions and has been supported by several existing TM
systems [1, 7, 6, 9].

The atomic construct specifies a block of operations executed
by a thread atomically (no partial effects of the atomic block’s exe-
cution become visible) and in isolation from other threads:

atomic {
...
}

The exact specification of these properties depends on the under-
lying transaction model (e.g. , weak atomicity vs. strong atomicity
[3, 15]) and is orthogonal to the irrevocability considerations.

The implementation of the atomic construct involves execution
of all the operations of the atomic block in a transactional context.
The atomic blocks can be nested - their semantics then typically
adhere to the closed nested transactions model [11]. Since in the
majority of transaction models [4] it is assumed that transactions
can undergo multiple revocations until they successfully commit,
most TM systems also assume that all operations executed within
an atomic block are revocable, that is, their side-effects can be au-
tomatically rolled back.

This restriction seems to be one of the major obstacles preventing
wide adoption of transactions in real-world programs. Irrevocabil-
ity is our proposal on how to lift this restriction. Generally speak-
ing, we would like to introduce a new construct, irrevocable.

This construct, when used inside of an atomic block, would guaran-
tee that the execution of the subsequent actions would never cause
the atomic block to be revoked. For example, in the figure below,
we would like to ensure that no action following invocation of the
method used to print the message to the screen would cause revo-
cation of the atomic block which would in turn guarantee that the
message will be printed only once:

atomic {
...
irrevocable;
System.out.println("HelloWorld");

...
}

In Section 4 we discuss how the runtime system can automati-
cally trigger irrevocability to transparently handle I/O and system
calls, without requiring any explicit constructs to be used.

The ability to avoid revocations and guarantee successful com-
pletion of the atomic block “in one step” can also be extremely use-
ful for contention management purposes as it can improve through-
put of long-running transactions that could otherwise be potentially
revoked very frequently. While the general behavior of the basic
irrevocable construct described here remains the same regard-
less of its potential use, its exact syntax and semantics can be tai-
lored to better suit specific applications, such as contention man-
agement described in Section 5.

3. DESIGN AND IMPLEMENTATION
Our system uses a single foundational mechanism for support-

ing irrevocable transactions and maps different usage models to the
underlying implementation of the basic irrevocable construct.
Our work is set in the context of a strongly atomic [15] STM system
that implements optimistic read concurrency using version num-
bers and pessimistic write concurrency using exclusive write locks.
In STM systems using optimistic read concurrency version num-
bers are used to validate transactional read operations at commit
time. A detailed description of this type of STM has been pre-
sented in [1, 7] and of its incarnation supporting strong atomicity
in [15]. The choice of an STM has influenced the design of our ir-
revocability mechanism, but our mechanism can be easily adapted
to other types of STMs.

3.1 Design
A trivial solution to making a transaction irrevocable is to sus-

pend execution of all other transactions in the system to prevent
them from affecting the state of the irrevocable one 1; for example,
by requiring acquisition of a single global lock. While this solution
works, it greatly reduces the achievable concurrency and is unlikely
to scale to highly parallel machines. One of our design goals has
been to allow concurrent execution of revocable transactions with
an irrevocable transaction to enable maximum throughput. Fur-
thermore, in systems supporting strong atomicity [15], even non-
transactional accesses may trigger transaction revocations. In such
systems execution of all threads, not only the transactional ones,
would have to be suspended before making a given transaction ir-
revocable.

Another solution would be to require an irrevocable transaction
to always acquire an exclusive lock on each data access, regardless
of whether the data item it tries to access is meant to be read or
written. Moreover, in the case of a conflict, the contention manager
1Execution of some of these transactions may have to be revoked
prior to suspension in case they hold resources, such as locks, re-
quired by the irrevocable transaction to complete its execution.
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Figure 1: Diagrams illustrating the SORL protocol phases.

would have to ensure that the execution of a revocable transaction
gets revoked. However, this technique still disallows certain inter-
leavings of operations – for example, a revocable transaction would
be blocked even if it only wanted to read an item that an irrevocable
transaction has also only read (i.e. , it disallows read sharing with
the irrevocable transaction).

We therefore propose a hybrid protocol called single-owner read
locks (SORL). Before becoming irrevocable, transactions try to ac-
quire a token. If another transaction tries to become irrevocable
while one irrevocable transaction is executing, it waits for the to-
ken to be released. If multiple transactions request a transition to
irrevocability, the contention manager decides the order in which
the token will be granted to each individual transaction. The re-
quirement to allow only one active irrevocable transaction at any
given time is difficult to avoid in a general case. Consider a system
that allows more than one irrevocable transaction to execute con-
currently. Assume that one of the irrevocable transactions requests
access to a resource already held by another irrevocable transaction
and vice versa. This leads to a classical deadlock situation which
can only be resolved by revoking execution of one of the transac-
tion. In this case, however, deadlock cannot be resolved since both
transactions are irrevocable.

Since we allow only one active irrevocable transaction at any
given time, it is only this single transaction whose revocation needs
to be prevented. As a result, it is also the only one that needs to
acquire and maintain read locks and the implementation of the read
lock protocol can be greatly simplified. All the revocable trans-
actions execute their reads optimistically and are allowed to read
the same data items as the irrevocable one. On a write, an irre-
vocable transaction still acquires an exclusive lock, either directly
or by upgrading a read lock. However, a revocable transaction is
not allowed to write any data item that has been read-locked by the
irrevocable transaction.

The SORL protocol has been designed to allow transition of a
regular transaction into an irrevocable state “on-the-fly” during its
execution. It consists of two phases:

1. Irrevocability transition. This phase is executed when a
regular transaction decides to make a transition to an irrevo-
cable state. If this phase is successful we say that the transac-
tion successfully transitioned to an irrevocable state (became
irrevocable). At the beginning of this phase the transitioning

transaction first acquires the irrevocability token, then it val-
idates its read set; that is, determines if all its read operations
are still valid 2 and, if they are, acquires single-owner read
locks for all data items it has read – the transition phase is
successful. In case some read operations are invalid, the tran-
sition fails and the transaction releases the token, rolls back,
and re-executes. In order to guarantee correctness of the tran-
sition phase, validation of a read operation and acquisition
of a single-owner read lock for the read-accessed location is
performed atomically – acquisition of a read lock succeeds
only if transactional meta-data associated with a given data
item, as described in Section 3.2, does not change since the
time the read has been validated. The concept underlying the
algorithm is depicted in Figure 1(a).

2. Irrevocability maintenance. Once a transaction becomes
irrevocable, it acquires locks on accessing all data items: tra-
ditional write locks on writes and single-owner read locks on
reads. The contention manager resolves all conflicts in favor
of the irrevocable transaction, which may ultimately result in
a revocation of any conflicting revocable transaction. This is
illustrated in Figure 1(b).

3.2 Implementation
Before diving into the implementation details, we will briefly

give an overview of the relevant features of McRT-STM – the TM
system used for this work. McRT-STM consists of three main com-
ponents: the Java virtual machine (ORP), the JIT compiler (Star-
JIT) and the core runtime system (McRT) providing essential trans-
actional support. We intentionally omit the description of strong
atomicity support in McRT-STM since the implementation of our
irrevocability mechanism is independent on the isolation model that
the base STM system supports. A more comprehensive description
can be found in [1] and [15].

In McRT-STM every access to a shared data item is mediated
using a transaction record. In case of objects, a transaction record
is embedded in the object header, and in case of static variables it
is embedded in the header of an object representing a class that de-
clares this static variable (access to all static variables of a given
class is mediated through the same transaction record). In case a
given data item is unlocked (has not yet been updated), its transac-
tion record contains a version number. In case a given data item is
write-locked (has already been updated), its transaction record con-
tains a transaction descriptor pointer pointing to a data structure
containing information about the lock owner (transaction descrip-
tor). These two cases can be distinguished by checking a desig-
nated low-order lock state bit. When a transaction record contains a
transaction descriptor pointer this bit is always unset since pointers
are aligned. In case a transaction record contains a version num-
ber this bit is always set because of the way version numbers are
generated. Implementation of the transactional concurrency control
mechanism in the original McRT-STM was carefully tuned [1, 15].
Consequently, one of our main goals when implementing the SORL
protocol was to retain all the benefits of the original implementa-
tion and avoid incurring additional overheads when no irrevocable
transaction is present in the system.

3.2.1 SORL encoding
In the original McRT-STM protocol, a data item could only be

in one of two states: write-locked or unlocked. This information
2As mentioned before, the STM system used for the purpose of
this work uses pessimistic writes. As a result write operations are
automatically valid.
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owner bit lock state bit description
0 0 write-locked
1 1 unlocked
0 1 unlocked
1 0 read-locked

Figure 2: SORL bit encoding.

could be encoded in the value stored in a transaction record using
only one bit – the lock state bit. In the SORL protocol, however, we
introduce an additional state: read-locked by an irrevocable trans-
action. We must therefore reserve an additional low owner bit to be
able to encode all three states. The final result is the encoding pre-
sented in Figure 2 3. The lock state bit is encoded using the lowest
bit of the value stored in the transaction record, while the owner bit
is encoded using the second-lowest bit of this value. The remain-
ing bits of the value stored in the transaction record contain either
a transaction descriptor pointer if the data item is write-locked, or a
version number in all the remaining cases. The two low-order bits
are the only piece of information that need to be associated with a
read-locked data item to facilitate all read lock operations – acqui-
sition, ownership test and release – since only a single transaction
operates on read locks at any time.

3.2.2 Read and Write Barriers
The implementation of transactional write barriers remains the

same as in the original McRT-STM system – before being allowed
to update a data item a transaction must wait for the data item to
become unlocked. This can be checked, as before, by inspecting
only the lock state bit.

The implementation of transactional read barriers in the original
McRT-STM system has been divided into two parts: highly tuned
JIT-inlined “fast-path” and the less performance critical “slow-path”
implemented as a method call executed when experiencing data ac-
cess contention. The code for the fast path remains the same and,
in fact, behaves the same as in the original McRT-STM system if
no irrevocable transactions are present, preserving all the original
performance-related properties. However, in case when either an ir-
revocable transaction needs to acquire a single-owner read lock or
a regular revocable transaction encounters a read-locked data item,
the execution will fall to the slow path to acquire the read lock or
check the owner bit to verify that the item is “readable”, respec-
tively.

3.2.3 Optimized logging
Irrevocability enables optimization of certain logging operations.

Every regular transaction in McRT-STM uses three types of logs: a
read set to record version numbers on reads, a write set to record
the set of write locks acquired on writes, and an undo log to record
original values of modified data items to support the undo opera-
tion. Since an irrevocable transaction never aborts, it does not need
to maintain the undo log – before performing a data modification,
a transaction checks whether it is irrevocable and elides logging of
undo-related information. Additionally, an irrevocable transaction
can avoid storing duplicate entries into the read set (for reads from
the same location), effectively providing a perfect read set filtering
mechanism for irrevocable transactions.
3In order to improve clarity of the presentation, the encoding pre-
sented in this paper is a subset of the one actually used in McRT-
STM. The bit encoding used in McRT-STM supports other mech-
anisms, such as strong atomicity, whose detailed description is be-
yond the scope of this paper. However, both encodings have iden-
tical functional and performance-related implications.

4. IRREVOCABILITY FOR SYSTEM
CALLS

Allowing arbitrary system calls to be executed inside of trans-
actions is an obvious application of irrevocability. In Java, system
calls are accessed via native methods and, as a result, modifica-
tions to the native methods subsystem were required to transpar-
ently handle system calls.

Native methods are presented to the runtime system in the form
of precompiled binaries. The runtime system is then responsible for
generation of the “bridge” code to allow execution of such methods
from the Java code. We augmented the runtime system so that the
“bridge” code uses the basic irrevocability construct described in
Section 2 to perform an irrevocability transition before the native
call is executed inside of a transaction. If the transaction succeeds
in becoming irrevocable, it proceeds with the native method call.
Initially, we augmented the “bridge” code uniformly for all native
methods that were executed in the system (both internal and user-
defined). However, our initial approach needed to be refined as
described in Section 7.

The execution of native methods inside of a transaction is po-
tentially unsafe for two reasons. The first reason is that the na-
tive methods may be used for actions such as I/O, and it would
be incorrect to re-execute such actions. Our irrevocability mecha-
nism addresses this since an irrevocable transaction is guaranteed
to succeed. The second reason is that the native methods may not
have been instrumented to allow a transaction control over arbi-
trary shared memory accesses (except for accesses to the Java heap,
which go through JNI wrappers), and hence the memory operations
from the native method may not be isolated (and atomic) with re-
spect to memory operations from another native method executing
inside a different transaction. Our implementation also takes care
of this problem since at most one transaction can be executing a
native method at any given time (only one irrevocable transactions
can be present in the system).

5. IRREVOCABILITY FOR CONTENTION
MANAGEMENT

In addition to using irrevocability to handle system calls, we
would also like to use the same mechanism to help manage con-
tention in situations when some transactions are likely to be re-
voked frequently as a result of conflicts. For example, consider
a program using a transactional hash-table where insertions to the
hash-table may cause it to be rehashed. The rehashing transac-
tion has to access all elements in the hash-table and will likely en-
counter a lot of contention with other transactions accessing this
hash-table at the same time. One solution that can be used to im-
prove overall application throughput in such cases is to to trigger
irrevocability automatically based on some heuristic utilizing data
gathered during the application’s execution to pick the most appro-
priate candidate for irrevocability (we present results of our exper-
iments with one such heuristic in Section 7). Another solution is
to allow a programmer to “manually” select the rehashing trans-
action that should operate in the irrevocable mode. When using
irrevocability for contention management a programmer may wish
to opt out from triggering irrevocability and potentially follow a
different execution path when certain conditions are met. In order
to satisfy this requirement we introduce a cond_irrevocable
language construct whose semantics is extended with respect to the
basic irrevocable construct (described in Section 2) to support
what we will from now on call conditional irrevocability.
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5.1 Language integration
The syntax of the cond_irrevocable construct in its most

general form is presented below:

cond_irrevocable (time) { foo(); }

Method foo() is an arbitrary method returning a boolean
value whose execution must be valid in the same scope where the
cond_irrevocable construct is used. It specifies a condition
for triggering irrevocability – if the condition evaluates to true then
the irrevocability transition phase is initiated, otherwise the exe-
cution simply proceeds in a revocable form. Since only one irre-
vocable transaction can be active in the system at any given time,
we also allow the programmer to specify the maximum amount
of time a transaction is willing to wait to become irrevocable (by
analogy to the conditional synchronization constructs, such as the
wait call in Java). After the prespecified amount of time elapses,
the IrrevocableTimeoutException is thrown to signal this
event. We chose to use new syntax for the cond_irrevocable
construct because its semantics goes beyond a simple if (foo())
irrevocable; statement (with timeout) as we describe in the
following section.

5.2 Cond_irrevocable construct translation
The runtime executes the following actions when it encounters

the cond_irrevocable construct. The method specifying the
irrevocability condition is evaluated and if its evaluation yields false
then the transaction remains revocable and the execution moves to
the point immediately following the cond_irrevocable con-
struct. Otherwise the current transaction attempts to acquire a token
and proceed to the irrevocability transition phase. Introduction of
conditional irrevocability raises an interesting issue. It is possible
that two transactions follow the same execution path and attempt
to trigger irrevocability at the same time. For example two trans-
actions inserting into the same data structure may simultaneously
decide to resize it. One transaction will become irrevocable and re-
size the table. At this point, the second transaction may no longer
need to resize the table and hence the irrevocability condition may
no longer be true. This would cause the second transaction to abort
since the condition is part of its read set. To avoid this, we evaluate
the irrevocability condition inside a closed nested transaction [11].
We re-evaluate the condition if a transaction fails to be irrevocable,
but abort only the inner transaction.

The cond_irrevocable construct is implemented using Poly-
glot [12], an extensible source-to-source Java compiler. The syn-
tactic form of the cond_irrevocable construct is translated
into the code sequence presented in Figure 3. 4 The required low
level transactional primitives such as basic irrevocable con-
struct, nested transaction, partial rollback, and the timeout-enabled
acquisition of a token are provided by the core runtime system.
The token acquisition procedure may return three possible values:
SUCCESS indicating that the token has been acquired instanta-
neously, WAITED indicating that there was contention on the to-
ken acquisition but the token was acquired before the timeout, and
FAILURE indicating that the token acquisition operation timed out.
Transaction abort in McRT-STM, as described in [1], is signaled
and propagated up the call stack by throwing a special type of ex-
ception (TransactionException). It is up to the method im-
plementing inner transaction commit (txnCommitInner()) to
decide whether to propagate this exception up the call stack and
4In order to improve clarity of the presentation the code sequence is
slightly simplified and it assumes irrevocability is always triggered
in a context of an enclosing outer transaction.

while(true) {
txnStartInner(); // start a transaction
try {

boolean conditionEvaluationResult = foo();
if (conditionEvaluationResult) {
LockOperationResult lockResult =

acq_token(time);
if (lockResult == FAILURE)

throw new IrrevocableTimeoutException();
else if (lockResult == WAITED)

throw new TransactionException();
else {

// may throw TransactionException()
irrevocable;
break;

} } }
finally {

if (!txnCommitInner()) continue;
} }

Figure 3: Translation of the cond_irrevocable (time)
foo(); construct.

abort the entire enclosing transaction (in case the triggering irrevo-
cability was unsuccessful) or only re-execute the inner transaction
(when more than one transaction attempted to become irrevocable
at the same time). If the execution of the enclosing transaction
needs to be revoked, it is re-started as an irrevocable one. The to-
ken is held throughout the execution of the irrevocable transaction
and released upon its commit.

6. EXPLICIT REVOCATIONS
Some TM systems [1, 6] provide additional transactional con-

structs, such as atomic-orelse and retry, that may allow
transaction revocations to be explicitly triggered. In the course of
our current work we came to an unsurprising conclusion that such
constructs do not easily compose with uses of the irrevocable
construct. In order to prevent incompatible concurrent uses of ir-
revocability and explicit revocations triggered by the programmer,
we designed and implemented a mechanism extending method sig-
natures to propagate information required to statically detect such
incompatible usage cases while still allowing the compatible ones.
We now briefly describe the retry and atomic-orelse con-
structs. A more detailed description of their behavior and appli-
cations can be found in [6] and the discussion of their adaptation
to Java can be found in [1]. We then present an overview of our
solution based on a motivating example, followed by the detailed
description of the mechanism.

6.1 Retry construct
The retry construct can only be used inside of an atomic block

(potentially nested) and is typically used as part of a conditional.
The use of this construct causes generation of a retry event that
can be propagated up the call stack until it reaches the level of the
outermost transaction. The outermost transaction and all its inner
transactions are then aborted and re-executed.An example of how
the retry construct can be used is presented below:

atomic {
...
if (!condition) retry; // revoke outermost

...
}
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In this example, a thread executing the atomic block waits for
the value of the static boolean variable condition (assumed to
initially be set to false) to be set to true by another thread.

Clearly, the semantics of the retry construct is incompatible
with the semantics of the irrevocable construct, when both
constructs are used on the same execution path. Consider a modi-
fied version of the example above that places the irrevocable
construct immediately followed by a print statement between the
beginning of the atomic block and the conditional containing the
retry construct. It is unclear what would be a correct behav-
ior in case the current transaction transitioned to the irrevocable
state to protect the print statement from being re-executed (using
the irrevocable construct) and then was asked to abort (using
the retry construct).

6.2 Atomic-orelse construct
The situation is additionally complicated in presence of another

construct, the atomic-orelse, which is used to compose two
or more alternative transactions [1, 6]. This construct also has to
be used inside of a potentially nested atomic block. Let us con-
sider a case when only two alternatives are being composed. The
execution starts with the first alternative being executed as a nested
transaction. If it completes successfully, the execution of the whole
atomic-orelse construct is successful as well. If during the
execution of the first alternative the retry construct is used, the
retry event is generated but its propagation stops at the level of
the nested transaction, whose execution then gets revoked. Then
the second alternative is executed as a nested transaction. How-
ever, the use of the retry construct within the second alternative
causes the retry event to be propagated to the level of the outermost
transaction enclosing the atomic-orelse construct. Then the
execution of the entire outermost transaction gets revoked and the
whole process of selecting an alternative retried.

An example of how the atomic-orelse construct can be used
is presented below, where a thread executing the code fragment
chooses one of the two alternatives based on one of the conditions
(assumed to initially be set to false) being set to true by other
threads.

atomic {
...
atomic {
...
if (!condition1)
retry; // revoke nested only
...

}
orelse {
...
if (!condition2)
retry; // revoke outermost
...

}
...
}

It is straightforward to generalize the behavior of this construct
to more than two alternatives – if the second alternative fails the
remaining alternatives keep getting executed until one of them suc-
ceeds or the last one retries in which case the retry event gets prop-
agated to the level of the outermost enclosing transaction.

6.3 Overview
Our system uses a combination of compile-time analysis and dy-

namic irrevocability suspension technique to make irrevocability
coexist with transaction retries. We statically rule out a possibility

of a transaction trying to become irrevocable and attempting a retry
within the same scope. However, we allow a limited use of the
retry construct in an inner transaction nested in some outer irre-
vocable transaction provided that the retry event does not propagate
to the outer transaction. This way, we can safely execute irrevoca-
ble actions in the outer transactions and allow the inner transaction
to retry as long as the inner transaction itself does not trigger irre-
vocability. An example of such situation is presented below, where
it is safe to retry the inner transaction since the use of the retry
construct will never cause revocation of the print statement – con-
trol will be passed to the orelse clause which does not retry.

atomic {
...
irrevocable;
System.out.println("HelloWorld");
atomic {
... retry; ...

}
orelse {
... // does not retry

}
...
}

We will first present a set of additional examples to illustrate
rules that need to be followed when programming with retry and ir-
revocability and then present the mechanisms used to guarantee that
the rules are indeed being obeyed. We would like to emphasize that
these mechanisms are intended to be used when irrevocability is ap-
plied to handling I/O and system calls, in which case their presence
is essential, but they can also be adapted to help programmers use
irrevocability for contention management (for example, by having
compile-time analysis generate warnings instead of errors).

6.4 Programming with retry and
irrevocability

We define the following set of rules for the retry construct and
the atomic-orelse construct if they are encountered within an
irrevocable transaction:

1. The use of the retry construct enclosed only by one or
more (nested) simple atomic regions (none of which is part
of the atomic-orelse construct) should be forbidden. In
such a case we do not know up front how far the retry event
will be propagated. It is therefore possible for the retry event
to propagate even beyond the point when irrevocability was
triggered.

2. The use of the retry construct within the Nth alternative
of the atomic-else construct consisting of N alternatives
should be forbidden for the same reason as above.

3. The use of the retry construct within any of the first N-1
alternatives of the atomic-else construct consisting of N
alternatives should be allowed provided that irrevocability is
not triggered within the scope of any of the N-1 alternatives.
We allow this behavior since the retry event will not get prop-
agated to the outer, potentially irrevocable, transaction.

In Figure 4 we illustrate how the rules described above work by
presenting sample code sequences (using only transactional con-
structs for brevity) that should be allowed or disallowed. We use
the basic irrevocable construct since the rules are meant to
be followed mostly in case irrevocability is used to handle I/O and
system calls when the same type of construct is used (as described
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atomic {
irrevocable;
atomic {
retry;

}
}

atomic {
irrevocable;
atomic {
}
orelse {

retry;
}

(a) DISALLOWED (b) DISALLOWED

atomic {
irrevocable;
atomic {
retry;

}
orelse {
}

}

atomic {
irrevocable;
atomic {

irrevocable;
retry;

}
orelse {
}

}
(c) ALLOWED (d) DISALLOWED

Figure 4: Usage of retry and atomic-orelse constructs in presence of irrevocability.

in Section 5). The code sequence in Figure 4(a) should be disal-
lowed by rule number 1, otherwise the retry event will propagate
beyond the point where the transaction became irrevocable. The
code sequence in Figure 4(b) should be disallowed for the same
reason by rule number 2. The code sequence in Figure 4(c) should
be allowed by rule number 3 (the retry event is confined within
atomic-orelse and will never propagate beyond point when ir-
revocability was triggered), while the code sequence in Figure 4(d)
should be disallowed by the same rule (the retry event is confined
but irrevocability is triggered again in the scope of confinement).

6.5 Compile-time analysis
Ideally a compile-time analysis would detect and disallow all the

sequences that are forbidden according to the rules described pre-
viously, and only those sequences. However, such an analysis is in
general not possible since it would require the ability to precisely
determine all the control flow paths of the application. For exam-
ple, presence of the retry construct in the conditional branch that
is never taken is always correct regardless of whether it is confined
within the atomic-orelse construct or not. In our system we
implemented a flow-insensitive compile-time analysis that rules out
incorrect programs, but may also conservatively rule out some ad-
ditional programs.

We extend a signature of Java methods to be potentially extended
with one of the following qualifiers:

• norevoke – a method whose signature is extended with the
norevoke qualifier contains a direct (within the body of the
method) or indirect (through a chain of method calls) use of
the irrevocable construct that can potentially make the
enclosing outer transaction irrevocable

• mayretry – a method whose signature is extended with the
mayretry qualifier contains a direct or indirect use of the
retry construct that can potentially cause propagation of
the retry event to the level of the enclosing outer transaction

For the purpose of the compile-time analysis, we treat the retry
construct and the irrevocable construct as methods whose sig-
natures automatically contain appropriate qualifiers.

The following rules concerning the qualifiers must be enforced
by the modified Java compiler:

1. The signature of every method containing a direct use of
the irrevocable construct must contain the norevoke
qualifier.

2. The signature of every method containing a direct use of the
retry construct must contain the mayretry qualifier, un-
less all uses of the retry construct are confined to one of
first the N-1 alternatives of the atomic-orelse construct
consisting of N alternatives.

3. For every method of a given class or interface whose signa-
ture contains a qualifier, signatures of all methods from the
super-classes or super-interfaces that this method either must
contain the same qualifier.

4. Similarly to rule number 1, the signature of every method
containing a call to another method whose signature contains
the norevoke qualifier must also contain the norevoke
qualifier.

5. Similarly to rule number 2 (and under the same condition),
the signature of every method containing a call to another
method whose signature contains the mayretry qualifier
must also contain the mayretry qualifier.

As a result, the qualifiers become part of the explicit contract that
governs interactions between different parts of the same application
(e.g. , some library code and user-level code using this library).

Despite Java’s dynamic method dispatch mechanism, this infor-
mation required to enforce rule 4 and rule 5 is available at compile
time thanks to rule number 3.

Once the placement of the qualifiers has been verified by the
compiler according to the rules listed above, only a trivial check
is required to verify if the retry event has a chance to propagate
to the scope of an irrevocable transaction – it will be the case if
two methods whose signatures contain different types of qualifiers
could be executed in the same scope.

6.5.1 Implementation
When implementing our compile-time analysis, we tried to avoid

further (beyond introduction of the TM-related constructs) modifi-
cations to the Java language. We overload semantics of the Java’s
throws clause and define two special types of qualifier excep-
tions, never instantiated at runtime, to serve as qualifiers. An ad-
ditional advantage of using the throws clause to propagate infor-
mation about the irrevocable and the retry constructs is that
methods not using these constructs explicitly but only propagating
information about their use can be compiled using a standard Java
compiler that does not support any transactional extensions.
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Figure 5: Number of rehashing transaction aborts normalized with respect to total number of aborts.
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Figure 6: Length of the rehashing transactions normalized with respect to length of all transactions.

We implemented our analysis in the Polyglot compiler [12] by
introducing an additional compiler pass, modeled after the stan-
dard exception checker, but processing the qualifier exceptions sep-
arately from all other types of exceptions. The new compiler pass
checks that the qualifier exceptions are propagated correctly, and
that no two methods throwing different types of qualifier excep-
tions are present in the same scope. The only additional rule that
needed to be enforced was to generate a compile-time error in case
of an attempt to suppress propagation of a qualifier exception using
a try-catch clause.

6.6 Irrevocability suspension
In order to match the behavior of the irrevocable and retry

constructs described earlier in this section we had to modify the im-
plementation of our irrevocability mechanism described in Section
3. Previously we assumed that once a transaction became irrevoca-
ble, no part of it would need to be (or even could be) rolled back.
This may no longer be true since the irrevocable transaction could
encounter a retry construct in a nested transaction.

We therefore introduce the notion of irrevocability suspension.
An irrevocable transaction that starts one of the N-1 alternatives
of the atomic-orelse statement consisting of N alternatives
dynamically suspends its irrevocability. When irrevocability of a

transaction gets suspended, the operations of this transaction can
be rolled back but only as a result of the retry construct – other
transactions still cannot affect the execution of a transaction whose
irrevocability has been suspended. In a suspended state, an irrevo-
cable transaction must always maintain an undo log and therefore
cannot use optimized logging described in Section 3.2.3. It can,
however, still use the read set filtering described in the same sec-
tion. Note that irrevocability needs to be suspended only when a
transaction starts executing an alternative of the atomic-orelse
construct that can potentially retry. In turn, this can be detected stat-
ically. Irrevocability is resumed when the transactions goes back to
the scope where retry cannot happen anymore – the runtime system
tracks the depth appropriately for this.

6.7 Discussion
Our choice of qualifiers described earlier in this section repre-

sents only one point in a design space. In our system, “regular”
transactions can neither become irrevocable (i.e. , trigger irrevoca-
bility) nor retry (i.e. , generate a retry event) – we consider both
irrevocable transactions and retrying transactions as special cases
and use qualifiers to make these cases explicit to the programmer.
Alternatively, one could envision a solution where it is perfectly
legal for a “regular” transaction to become irrevocable. Qualifiers
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Figure 7: Number of aborts – implicit irrevocable vs. revocable (normalized).
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Figure 8: Average elapsed time – implicit irrevocable vs. revocable (normalized).

could then be used to mark as special cases transactions that can
never become irrevocable (i.e. , never trigger irrevocability) and
those that can potentially retry (i.e. , can generate a retry event).
Obviously a different set of rules would have to be defined to pro-
vide similar guarantees to the ones provided by the solution we pre-
sented in the appendix. We defer further exploration of this design
space to future work.

7. PERFORMANCE EVALUATION
We first present the results of using irrevocability for contention

management. All our experiments were performed on an IBM
xSeries 440 machine running Windows 2003 Server Enterprise Edi-
tion. This machine has 16 2.2GHz Intel R© Xeon R© processors and
16GB of shared memory arranged across 4 boards.

7.1 Contention management
We use irrevocability to guarantee successful and timely com-

pletion of transactions that are potentially long-running and likely
to abort frequently. We use a hash-table as an example – most com-
mercial implementations rehash the hash-table when the load factor
exceeds a threshold. We investigate if irrevocability can improve
performance of hash-table operations in the presence of rehashing

using a transactional version of a well-known and highly efficient
implementation of the hash-map data structure created by Doug
Lea [10]. The transactional version of this hash-map was created
by converting synchronized regions into transactional regions. The
transactional version has been previously shown to perform as well
as the synchronized one [1]. We therefore concentrate on compar-
ing the performance of versions that use irrevocability (implicitly
or explicitly – as described below) with a version that does not.

We run multiple configurations for both revocable and irrevoca-
ble versions of the system, varying the following parameters:

• number of threads: 1, 2, 4, 8 or 16

• total number of operations (distributed uniformly among all
threads): 200k, 100k, 50k or 20k

• distribution of types of hash-map operations: 10%, 40% or
70% of lookups; the remaining N operations (where N=100%-
lookup%) comprised of two-thirds insertions and one-third
deletions.

We ran all configurations using the finest available granularity of
conflict detection – word-level for objects and element-level for ar-
rays. Our measurements are based on executing each configuration
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Figure 9: Average elapsed time – implicit irrevocable vs. explicit irrevocable (normalized).
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Figure 10: Average elapsed time – explicit irrevocable vs. revocable (normalized).

100 times (discarding the compilation cost). Despite using a large
number of iterations, there was some jitter in our results. This is
caused by re-hashings being triggered nondeterministically (by the
first transaction that observes threshold being exceeded) as well as
due to the configuration of the machine (it is arranged as clusters
of 4 CPUs which leads to somewhat unpredictable communication
cost). The general trends represented by these numbers are, how-
ever, quite clear and allow us to draw sound conclusions with re-
spect to the overall performance of our system. In order to simplify
the analysis of the results, we present and discuss only numbers for
configurations executing 200k and 20k operations – the results for
“intermediate” configurations, unsurprisingly, represent the middle
ground between the two “boundary” configurations and do not add
anything significant to the discussion.

The first experiment estimates the potential gain from applying
irrevocability to hash-map rehashing. In Figure 5 we plot the num-
ber of aborts for the rehashing transactions normalized with respect
to the total number of aborts by all transactions. We observe that
the number of rehashing transaction aborts can amount to almost
75% of the total aborts. The next set of graphs, in Figure 6, plots
the length of aborted rehashing transactions normalized with re-
spect to length of all aborted transactions. We wanted to estimate
the work wasted due to the aborts of the rehashing transaction. We

use the length of the read set as a proxy for the length of a transac-
tion. The figure shows that rehashing transactions dominate the to-
tal abort cost – for some configurations nearly all the aborts can be
attributed to the rehashing transaction. The analysis of both figures
indicates that irrevocability would be a good candidate for improv-
ing performance if we managed to use it for reducing the number
of aborts of the rehashing transaction.

It would certainly be most convenient to trigger irrevocability
“under-the-hood” without requiring explicit programmer’s inter-
vention. We experiment with one simple heuristic that could be
used for that purpose. We categorize all transactions into two groups:

1. transactions that abort at most once – their execution is not
particularly amenable to failure (their abort is “accidentally”
caused by an unfortunate interleaving of their operations with
operations of other transactions)

2. transactions that abort multiple times – their execution is for
some unknown reason abort-prone (for example, they may
be long-running)

We then trigger irrevocability on the second abort of a given trans-
action in hope of improving performance for transactions from the
second group, such as rehashing transactions in the case of the
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hash-map benchmark. Our categorization is obviously simplified –
even transactions that are not particularly amenable to failure may
be aborted several times, which could result in multiple transac-
tions competing to enter irrevocable mode. In order to avoid serial-
ization of these transactions we make acquisition of irrevocability
token (described in Section 3.1) non-blocking – if token is already
acquired, transaction proceeds in non-irrevocable mode.

Our goal when designing this experiment was to verify if irre-
vocability can be successfully used to automatically improve aver-
age performance of the transactional workloads. The analysis of
Figure 7 and Figure 8 provides an evidence that this is indeed the
case – even when using a rather simple heuristic we observe signif-
icant reduction in the number of aborts and up to over 4x speedup
in the majority of multi-threaded runs. Because of its simplicity,
our heuristic does lead to some performance degradation in some
cases. At the same time, we by no means claim to have exhausted
the space of solutions that can be used to decide if (and when) ir-
revocability should be triggered. One possible solution to further
improving performance is to use more sophisticated heuristics 5,
which is an interesting research area on its own that, however, goes
beyond the scope of this paper. Another option is to rely on a
programmer to utilize application-specific knowledge and explic-
itly designate transactions that should run in the irrevocable mode
– our third set of experiments verifies whether utilization of such
knowledge can indeed be beneficial.

In the third set of experiments we execute the same hash-table
operations, but every transaction that is about to execute a rehash-
ing routine is explicitly marked as irrevocable using the conditional
irrevocability construct described in Section 5 (with infinite time-
out). The evaluation of the irrevocability condition ensures that no
two transactions will attempt rehashing at the same time. In Figure
9 we plot the average elapsed times for configurations with rehash-
ing transactions explicitly marked as irrevocable normalized with
respect to the average elapsed time for configurations implicitly
triggering irrevocability. We can observe that in almost all multi-
threaded runs performance has been improved (up to 2x) even with
respect to configurations whose performance was already in most
cases better than that of configurations that did not use irrevocabil-
ity (Figure 8). The reason single-threaded runs may suffer some
penalty here is that for these configurations the cost of triggering
irrevocability must be paid even for single-threaded runs, while for
the others it does not. 6. Even in the single-threaded cases, however,
we observe that the overheads are relatively low. With respect to
comparison between multi-threaded configurations with rehashing
transactions explicitly marked as irrevocable and those not using
irrevocability at all, the former deliver up to over 8x speedup and
in all cases perform no worse or marginally worse than the latter
(Figure 10).

7.2 Native method calls
We evaluate performance of the irrevocability mechanism used

to handle native method calls using a transactional version of a
well known Java benchmark emulating a 3-tier system for a whole-
sale company with multiple warehouses – SPECjbb2000 [17]. The
transactional version of SPECjbb2000 (txnJBB) was created by re-
placing the Java synchronization constructs (monitor acquisition
and release) with their transactional equivalents (transaction start
and commit).

5For example, transaction size could be taken into consideration.
6Non-irrevocable configurations obviously do not trigger irrevoca-
bility at all and implicitly-irrevocable configurations do not trigger
it in single-threaded cases due to lack of aborts.
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Figure 11: Number of irrevocability attempts – irrevocable vs.
revocable (normalized).
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Figure 12: Average throughput – irrevocable vs. revocable
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We ran our set of experiments using txnJBB varying the number
of warehouses (and correspondingly threads) from 1 to 16. We ran
10 iterations of each configuration (excluding compilation cost).
We wanted to measure whether the serialization of the irrevoca-
ble transactions affected total throughput. We therefore compare
the irrevocable version of the system (implicitly making the cur-
rent transaction irrevocable before it calls a native method, as de-
scribed in Section 4) with the revocable one. Note that the revo-
cable version may be potentially unsafe since I/O operations and
native methods inside transactions may get re-executed – however
the revocable version provides an upper bound on the performance.
Our initial performance (throughput) comparison indicated that uni-
form application of irrevocability for all native method calls does
affect the overall performance, especially as the number of ware-
houses (and therefore threads) grows since transactions end up wait-
ing to be irrevocable. In Figure 11 we plot both the number of total
irrevocability attempts 7 (the first bar) and the number of contended
irrevocability attempts (the second bar) when a transaction needed
to wait for the currently irrevocable one to complete.

To remedy the problem we identified a small subset of inter-
nal native methods without any irrevocable side-effects. These in-
clude methods returning object’s hash-code, methods implement-

7All the attempts were successful due to the low contention on data
accesses and thus possibility for a conflict-induced abort.
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ing numerical computations in the java.lang.Math class (e.g. ,
trigonometric functions), a method returning a string representation
of a java.lang.Double object and a method natively creating
a Java object. As indicated on Figure 12, exclusion of these few
methods was sufficient to make the performance of the irrevocable
version comparable to the revocable one. In Figure 12 we plot aver-
age throughput for configurations using irrevocability uniformly on
all native methods (solid line) and the one excluding benign native
methods from triggering irrevocability (dashed line) – both normal-
ized with respect to the average throughput for configurations using
the revocable version of the system. The former induces up to 18%
overhead while the latter has virtually no overhead when compared
with the revocable version.

The results in this section demonstrate that irrevocability can be
used for executing actions that are difficult to undo inside transac-
tions without paying a performance penalty.

8. RELATED WORK
In parallel with this work Spear et al. [16] introduced a concept

similar to irrevocability – inevitable transactions. They present
and evaluate several different implementations of inevitable trans-
actions and explore their ability to handle system calls and to im-
prove performance of transactional applications. As a result of us-
ing a library-based STM they do not explore transparent handling
of I/O and system calls through automatic injection of “inevitabil-
ity” triggers. In their system, they forbid explicit user aborts inside
of inevitable transactions, but a mechanism that could enforce such
property is not discussed.

Martin et al. [2] introduce the notion of unrestricted transactions
in a context of a hardware transactional memory system. The con-
cept of unrestricted transactions is similar to irrevocability. How-
ever, in order to support their mechanism, they rely on a complex
hardware support that requires changing the cache coherence pro-
tocol as well as maintaining additional metadata in the memory
hierarchy. Also, their solution does not allow “on-the-fly” transi-
tion of a regular transaction into the irrevocable state – a transaction
that wants to become unrestricted must first be aborted. It is unclear
how their proposal would be integrated in a language environment,
or would be used for contention management.

Welc et al. [18] describe a solution to handling system calls in
a restricted setting. In their system it is always safe for a transac-
tion to revert to using mutual-exclusion for synchronization. As a
result, they can handle system calls by reverting to using mutual-
exclusion right before such calls are executed. Naturally, their so-
lution is only applicable to systems where both types of concur-
rency control mechanisms (transactions and mutual-exclusion) are
not only allowed to co-exist but also provide the same synchroniza-
tion semantics. Such systems typically come with their own set of
restrictions and have not yet managed to gain wide popularity. A
similar solution, though established in a context of hardware trans-
actional memory, has been proposed by Rossbach et al. [13]. In
their system, a thread attempting to execute a critical section con-
taining I/O operations can acquire an exclusive lock preventing all
other threads, both transactional and non-transactional, from con-
currently executing the same critical section.

9. CONCLUSIONS
In this paper we have discussed the design and implementation

of irrevocable transactions – that is, transactions that are guaran-
teed to commit. We explored two applications of irrevocability,
one to safely execute general-purpose system calls from inside of
transactions and the other to use irrevocability for contention man-

agement. We showed that irrevocability can significantly improve
performance in many common programming situations. We also
showed that irrevocability can be used for handling actions such as
I/O which are difficult or impossible to undo.
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